Containment and Complementarity Relationships in Multidimensional Linked Open Data

Marios Meimaris and George Papastefanatos Institute for the Management of Information Systems Research Center "Athena"

{m.meimaris, gpapas}@imis.athena-innovation.gr

Multidimensional data

- Schema
 - Dimensions
 - Measures
 - Attributes
 - Code lists
- Data
 - Observations

Multidimensional Linked Data

- Origin of different source datasets
- LD recommendations and Best Practices provide common grounds across remote sources
- RDF Data cube¹ provides a common meta-schema
- Re-use of:
 - Dimension properties
 - Measure properties
 - Code lists
 - Hierarchies
- In case of no re-use, mapping/alignment is needed

1. http://www.w3.org/TR/vocab-data-cube/

Problem tackled

- Relating points in multidimensional data spaces semantically
- Bulk detection and computation of containment and complementarity relationships between observations
 - in the same dataset or
 - in different datasets
- Observation relationships are useful for:
 - performing OLAP analytics over multidimensional, multi-dataset data spaces
 - computing similarities/distances between observations
 - Suggestion mechanisms for relevant statistics
 - Exploratory analysis and discovery

Observations are related

- We identify two (non-exhaustive) types of relationships:
 - Observation containment

Observation complementarity

	D_1									
	refArea	refPeriod	sex	ex:Population	on					
0 ₁₁	Athens	2001	Total	5M				D ₂		
012	Austin	2011	Male	5.5M	-	ι.		03	_	
								refArea	refPeriod	ex:Unemployment
	D						O31	Athens	2001	10%
	U ₂						O ₃₂	Athens	Jan2011	30%
	refArea	refPeriod	ex:Uner	nployment	ex:Poverty	1	O ₃₃	Rome	Feb2011	7%
O ₂₁	Greece	2011		26%	15%					
022	Italy	2011		20%	10%	<u></u>				

Observation Complementarity

 Two observations complement each other when they provide different information for the same point in the data space

 $(P_a \subseteq P_b) \land \left(\forall p_i \in P_a \cap P_b : h_a^i = h_b^i \right) \land \left(\forall p_j \in P_b \backslash P_a : h_b^j = c_{jroot} \right)$

P_k: the set of dimension properties for observation I

p_i: a single dimension property

 h_l^m : the value of property m for observation l

c_{iroot}: the top (root) concept for all hierarchies

Observation Containment

- An observation contains another observation when it is a *partial* or *full* generalization of the latter w.r.t to their shared dimension values
- Full containment vs Partial containment
 - Full containment means that a contained/containing observation can be directly rolled-up/drilled-down to the containing/contained observation,
 - Partial containment means that both contained and containing observation must be *rolled-up on their disjoint dimensions* to complement each other

full $(\exists M_i \in M_a \cap M_b) \land (P_a \subseteq P_b) \land (\forall p_i \in P_a \cap P_b : h_a^i \succ h_b^i)$

partial $(\exists M_i \in M_a \cap M_b) \land (P_a \subseteq P_b) \land (\exists p_i \in P_a \cap P_b : h_a^i \succ h_b^i)$

Containment example

	location	time	sex	Population	
obs1	Italy	2012	Total	59,478,000	
Sobs2	Riva del Garda	2012	Male	15,100	
obs3	Trentino	2012	Female	248,400	
— full					

partial

Hierarchy is reflexive (i.e. a value is a parent of itself)

Computation

- 1. Build the feature space
- 2. Group by dimension / measure
- 3. Extract containment per dimension / measure
- 4. Compute overall containment scores and classify as full or partial
- 5. Compute complementarity scores

Occurrence Matrix

1. Build the feature space into an occurrence matrix

- Each dimension value is a feature
- Encoded is the hierarchy of features (1 for occurrence and all parents, 0 otherwise)

	refArea										_	sex						
	WLD	EUR	AM	GR	IT	Ath	Rom	US	тх	Aus	ALL	2001	2011	Jan11	Feb11	м	F	т
obs11	1	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	1
obs ₁₂	1	0	1	0	0	0	0	1	1	1	1	0	1	0	0	1	0	1
obs ₂₁	1	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1
obs,,	1	1	0	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1
obs	1	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	1
obs.,	1	1	0	1	0	1	0	0	0	0	1	0	1	1	0	0	0	1
obs33	1	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1

Containment Matrices

2. For N observations, compute one NxN containment matrix CM_{pm} for each dimension p_m in the set of all datasets. Then cell [i,j] becomes:

- 1 if values of dimension are parent-child for observations i and j, or
- 0 otherwise

Function *sf* to determine this for observations o_a and o_b and dimension p_m :

 $sf(o\downarrow a, o\downarrow b)|\downarrow p\downarrow m = \{\blacksquare 1, 0, (a AND b)=b'_{otherwise}$

where a and b are the bit vectors of observations

Containment relationships

3. Adding all containment matrices **CM**_{pm} yields *full* and *partial* containment relationships in an overall containment matrix **OCM**:

$OCM = \sum_{i=1}^{i=1} k m u \downarrow_i CM \downarrow_i / \sum_{i=1}^{i=1} k m u \downarrow_i$

For observations o_a and o_b :

- $o_a cont_{full} o_b iff OCM[o_a, o_b]=1$
- $o_a cont_{part} o_b iff 0 < OCM[o_a, o_b] < 1$

Complementarity relationships

4. Complementarity is computed as follows:

$cf(o\downarrow a, o\downarrow b) = \{\blacksquare 1, 0, (sf(o\downarrow a, o\downarrow b) | \downarrow P = 1) \text{ AND } (a=b) \text{ otherwise } \}$

where P the occurrences of dimension properties and a, b the bit vectors of $\rm o_a$ and $\rm o_b$ in the occurrence matrix

For observations o_a and o_b :

• $o_a compl_{full} o_b iff OCM[o_a, o_b] > 0$

Containment is transitive, complementarity is symmetric

Data Cube Extension

Experimental Evaluation

- Datasets:
 - Population (Eurostat, Worldbank)
 - Internet households (Eurostat)
 - Poverty (Eurostat, Worldbank)
- 6 dimension properties
- 3 measure properties

#of obs.	refArea	refPeriod	sex	unit	age	poverty	internet	population
D ₁ (539)	85 regions,20 countries	2004-2011	N/A	Yes	Yes	Yes	N/A	N/A
D ₂ (1693)	293 regions, 33 countries	2003-2010	N/A	Yes	N/A	Yes	N/A	N/A
D ₃ (629)	42 regions, 3 countries	2009-2013	M, F, Total	Yes	N/A	N/A	N/A	Yes
D ₄ (316)	65 regions,7 countries	2009-2013	N/A	N/A	N/A	N/A	Yes	N/A

Results - Discussion

- Most new relationships are partial containments (~27% of possible relationships)
- Complementarity is the strictest relationship (0.03% of the total possible observation pairs)
- Relatedness of complementarity to partial/full containment
- ~1.3 million new links between observations

	D ₁	D ₂	D ₃	D_4
D1	647 (0.31%) full	N/A full	N/A full	N/A full
	34.3k (16.32%) partial	N/A partial	N/A partial	N/A partial
	N/A compl	N/A compl	N/A compl	N/A compl
D ₂	605 (0.02%) full	3370 (0.14%) full	N/A full	N/A full
	605k (14.83%) partial	378k (14.83%) partial	N/A partial	N/A partial
	1238 (0.04%) compl	N/A (complement	204 (0.004%) compl	N/A compl
D ₃	N/A full	N/A full	1k (0.26%) full	N/A full
	N/A partial	N/A partial	261k (65.9%) partial	N/A partial
	N/A compl	N/A compl	N/A compl	N/A compl
D ₄	N/A full	N/A full	N/A full	437 (0.17%) full
	N/A partial	N/A partial	N/A partial	22.2k (22.3%) partial
	328 (0.05%) compl	218 (0.005%) compl	592 (0.07%) compl	N/A compl

Future Work

- Suggestion mechanisms based on computed relationships, conduct user studies to evaluate
- Faster and more efficient computations (now O(N²))
 Better feature extraction
 - Dimensionality reduction
- Extracting *latent datasets* based on containment and complementarity relationships

Support

• DIACHRON

Managing the Evolution and Preservation of the Data Web

• **KRIPIS: SODAMAP Project**

linked-statistics.gr

UNIVERSITÄT LEIPZIG

Athena Research

EMBL

FORTH

