Containment and Complementarity Relationships in Multidimensional Linked Open Data

Marios Meimaris and George Papastefanatos
Institute for the Management of Information Systems
Research Center "Athena"

\{m.meimaris, gpapas\}@imis.athena-innovation.gr

Multidimensional data

- Schema
- Dimensions
- Measures
- Attributes
- Code lists
- Data

- Observations

Multidimensional Linked Data

- Origin of different source datasets
- LD recommendations and Best Practices provide common grounds across remote sources
- RDF Data cube ${ }^{1}$ provides a common meta-schema
- Re-use of:
- Dimension properties
- Measure properties
- Code lists
- Hierarchies
- In case of no re-use, mapping/alignment is needed

Problem tackled

- Relating points in multidimensional data spaces semantically
- Bulk detection and computation of containment and complementarity relationships between observations
- in the same dataset or
- in different datasets
- Observation relationships are useful for:
- performing OLAP analytics over multidimensional, multi-dataset data spaces
- computing similarities/distances between observations
- Suggestion mechanisms for relevant statistics
- Exploratory analysis and discovery

Observations are related

- We identify two (non-exhaustive) types of relationships:
- Observation containment
- Observation complementarity

Observation Complementarity

- Two observations complement each other when they provide different information for the same point in the data space

$$
\left(P_{a} \subseteq P_{b}\right) \wedge\left(\forall p_{i} \in P_{a} \cap P_{b}: h_{a}^{i}=h_{b}^{i}\right) \wedge\left(\forall p_{j} \in P_{b} \backslash P_{a}: h_{b}^{j}=c_{\text {jroot }}\right)
$$

P_{k} : the set of dimension properties for observation I
p_{i} : a single dimension property
$h_{1}{ }^{m}$: the value of property m for observation I
$\mathrm{c}_{\text {jroot }}$: the top (root) concept for all hierarchies

Observation Containment

- An observation contains another observation when it is a partial or full generalization of the latter w.r.t to their shared dimension values
- Full containment vs Partial containment
- Full containment means that a contained/containing observation can be directly rolled-up/drilled-down to the containing/contained observation,
- Partial containment means that both contained and containing observation must be rolled-up on their disjoint dimensions to complement each other

$$
\begin{gathered}
\text { full } \quad\left(\exists M_{i} \in M_{a} \cap M_{b}\right) \wedge\left(P_{a} \subseteq P_{b}\right) \wedge\left(\forall p_{i} \in P_{a} \cap P_{b}: h_{a}^{i} \succ h_{b}^{i}\right) \\
\text { partial }\left(\exists M_{i} \in M_{a} \cap M_{b}\right) \wedge\left(P_{a} \subseteq P_{b}\right) \wedge\left(\exists p_{i} \in P_{a} \cap P_{b}: h_{a}^{i} \succ h_{b}^{i}\right)
\end{gathered}
$$

Containment example

Hierarchy is reflexive (i.e. a value is a parent of itself)

Computation

1. Build the feature space
2. Group by dimension / measure
3. Extract containment per dimension / measure
4. Compute overall containment scores and classify as full or partial
5. Compute complementarity scores

Occurrence Matrix

1. Build the feature space into an occurrence matrix

- Each dimension value is a feature
- Encoded is the hierarchy of features (1 for occurrence and all parents, 0 otherwise)

	refArea										refPeriod					sex		
	WLD	EUR	AM	GR	IT	Ath	Rom	us	TX	Aus	ALL	2001	2011	Jan11	Feb11	M	F	T
obs_{11}	1	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	1
obs ${ }_{12}$	1	0	1	0	0	0	0	1	1	1	1	0	1	0	0	1	0	1
obs_{31}	1	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1
$\mathrm{obs}_{2} 2$	1	1	0	0	1	0	0	0	0	0	1	0	0	1	1	0	0	1
obs ${ }_{2}$	1	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	1
obs_{32}	1	1	0	1	0	1	0	0	0	0	1	0	1	1	0	0	0	1
obs $_{2}$	1	1	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	1

Containment Matrices

2. For N observations, compute one NxN containment matrix $\mathbf{C M}_{\mathrm{pm}}$ for each dimension p_{m} in the set of all datasets. Then cell [i,j] becomes:

- $\quad 1$ if values of dimension are parent-child for observations i and j, or
- 0 otherwise

Function $s f$ to determine this for observations o_{a} and o_{b} and dimension p_{m} :
$s f(o \downarrow a, o \downarrow b) \mid \downarrow p \downarrow m=\{\square 1,0, \quad(a A N D$
$b)=b_{\text {! }}$ otherwise
where a and b are the bit vectors of observations

Containment relationships

3. Adding all containment matrices $\mathbf{C M}_{\mathrm{pm}}$ yields full and partial containment relationships in an overall containment matrix OCM:

For observations o_{a} and o_{b} :

- o_{a} cont $_{\text {full }} \mathrm{o}_{\mathrm{b}}$ iff $\operatorname{OCM}\left[\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right]=1$
- o_{a} cont part o_{b} iff $0<\operatorname{OCM}\left[\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right]<1$

Complementarity relationships

4. Complementarity is computed as follows:
$c f(o \downarrow a, o \downarrow b)=\{\square 1,0$,
$(s f(o \downarrow a, o \downarrow b) \mid \downarrow P$
$=1)$ AND $(a=b)$ 'otherwise
where P the occurrences of dimension properties and a, b the bit vectors of o_{a} and o_{b} in the occurrence matrix
For observations o_{a} and o_{b} :

- o_{a} compl $_{\text {full }} \mathrm{o}_{\mathrm{b}}$ iff OCM $\left[\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right]>0$

Containment is transitive, complementarity is symmetric

Data Cube Extension

IIIEY IMIS
14
Athena Research Center Research ind inowvition Centerin information
Communitation and K Kowlecge Technologies

Experimental Evaluation

- Datasets:
- Population (Eurostat, Worldbank)
- Internet households (Eurostat)
- Poverty (Eurostat, Worldbank)
- 6 dimension properties
- 3 measure properties

Results - Discussion

- Most new relationships are partial containments ($\sim 27 \%$ of possible relationships)
- Complementarity is the strictest relationship (0.03\% of the total possible observation pairs)
- Relatedness of complementarity to partial/full containment
- ~1.3 million new links between observations

Future Work

- Suggestion mechanisms based on computed relationships, conduct user studies to evaluate
- Faster and more efficient computations (now $\mathrm{O}\left(\mathrm{N}^{2}\right)$)
- Better feature extraction
- Dimensionality reduction
- Extracting latent datasets based on containment and complementarity relationships

Support

- DIACHRON

Managing the Evolution and Preservation of the Data Web

DataMarket brox
师intrasoft eon ant moblen

- KRIPIS: SODAMAP Project

- linked-statistics.gr

Athena Research Center Rerearch and innovation Center in information
Communication and Knowledge Tecthnologies

